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Abstract

A novel spectral-element approach for the eikonal equation is presented based on
the work of Tucker et al. This approach is readily implemented in standard finite-
element flow solvers developed for the Navier-Stokes equations. Results are presented
for distance function (level set) for three planar configurations: circular cylinder, NACA
0012 airfoil, and T106 airfoil. Results demonstrate that the approach is capable of
arbitrary order of accuracy. For configurations with strong convex curvature, additional
curvature-based dissipation is added to the eikonal equation to generate a weak solution
consistent with the entropy condition.

1 Introduction
The eikonal equation

|∇u| = f (1)
u = g on Γ (2)

with f a known function with positive values, appears in many computational physics appli-
cations, including interface reinitialization[1–3], mesh generation[4–6], image segmentation[7,
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8] and first-arrival travel times[9–11]. For example, when f = 1 and g = 0, then u is the
distance function from the boundary Γ. Given this ubiquity, it is no surprise that there
exist a number of efficient partial differential equation algorithms for solving the eikonal
equation on Cartesian grids, for example the finite-difference Fast Marching[12, 13], Fast
Sweeping[14, 15], and Group Marching[16] methods, along with finite-element Discontinuous-
Galerkin methods[17].

While some of these methods can achieve O(NV ) complexity, where NV is the number
of volume degrees of freedom, there are still practical difficulties in their usage. In order to
achieve efficiency these schemes make use of the hyperbolic nature of the eikonal equation,
using specific sorting or sweeping through the volume combined with upwind schemes. This
causality, along with the reliance upon a regular Cartesian lattice, makes the extension
to general unstructured grids, or localized adaptation, problematic. For many applications
higher-order methods are required, which for the above algorithms typically involves complex
Essentially Non-oscillatory (ENO) schemes which are restricted to structured grids.

Hence, we see that these typical schemes for the eikonal equation require specialized
algorithms, which are often difficult to implement efficiently in a parallel environment, and
do not easily generalize to unstructured, high-order methods. Further, the solution of the
eikonal equation is often complementary to a more significant physics simulation, and the
data structures required may not be directly compatible between the two, necessitating a
further complex post-processing step to transfer the solution.

An alternative is to sacrifice some formal algorithmic efficiency, and re-cast Eqn. 1 to
more standard convection and diffusion operators, which can take advantage of existing
infrastructure and algorithms to solve the resulting equation. For example, Tucker[18] de-
veloped a body-fitted, finite-volume formulation to calculate the distance from the wall for
turbulence models, which leverages existing finite-volume solvers for the Navier-Stokes equa-
tions. This provides a direct path for an efficient parallel implementation that shares the
same data structures as the primary Computational Fluid Dynamics (CFD) solver.

The objective of this work is to extend the philosophy of [18] to general unstructured,
non-body-conforming meshes and high-order methods. Specifically, we seek to leverage
our recent work on Discontinuous-Galerkin Spectral-Element methods for the Navier-Stokes
equations[19–21] to develop an eikonal solver. This provides a parallel infrastructure which
is arbitrary order of accuracy, and can handle general unstructured mesh topologies. The
spectral-element method is implemented using an efficient three-dimensional tensor-product
formulation. We’ve previously demonstrated that the cost of the residual evaluation using
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this formulation can be made independent of order of accuracy through the use of software
optimization[19]. Adding the eikonal equation to this infrastructure can enable multiphase or
fluid-structure interaction simulations, by providing an efficient and accurate signed-distance
function.

The current paper first covers the development of the method in a body-fitted spectral-
element framework, then presents some “proof-of-concept” numerical experiments that demon-
strate the performance of the approach. Some of the specific topics which require further
research are discussed in the final Summary section.

2 Numerical Approach
Squaring the eikonal equation and writing the weak formulation we seek u ∈ Vp, where

Vp is a polynomial space, such that

(∇u · ∇u, v) = (f 2, v) ∀v ∈ Vp (3)

Squaring the equation does come at a cost. The stiffness of the system is now increased, and
it is not clear that the new system inherits the same boundedness properties as the original
equation. Using integration by parts this is rewritten as

− (u∇u,∇v)Ω +
(

̂u∇u · n, v
)

∂Ω
= (f 2, v)Ω + (u∇ · ∇u, v)Ω (4)

where the boundary curve is assumed to be a member of the set of element boundaries,
Γ ∈ ∂Ω, i.e. the mesh is boundary conforming. The overhat symbol, e.g. ̂u∇u · n, denotes
the numerical flux function across the element boundary.

There are several options for solving Eqn. 4. One option is to require a high-order
discretization (N > 2), and evaluate the curvature term ∇ · ∇u directly. This has the
advantage of solving a single scalar equation, but loses some formal accuracy, and was found
to be too stiff for practical application due to the loss of accuracy in the curvature forcing
term.

Another option is to introduce a scalar auxiliary variable for the curvature κ = ∇ · ∇u,
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and construct a nonlinear system as

− (u∇u,∇v)Ω +
(

̂u∇u · n, v
)

∂Ω
= (f 2, v)Ω + (uκ, v)Ω (5)

− (∇u,∇τ)Ω +
(
∇̂u · n, τ

)
∂Ω

= (κ, τ)Ω (6)

u = g on Γ (7)
∇u = fnΓ on Γ (8)

where nΓ is the surface normal. This is a system of two scalar equations, however the
boundary condition on ∇u does not fully constrain the curvature κ. An auxiliary equation
must be introduced to constrain the curvature, for example by specifying the curvature
on the boundary Γ and using this to correct the computed curvature. This is similar to
Li and Shu’s Discontinuous-Galerkin least-squares approach for solving the Hamiltonian
system, where the state must be constrained using the computed gradient and an auxiliary
equation[22]. Given this complication, this approach was not pursued.

In the current work, an auxiliary variable is introduced for the gradient, q = ∇u, resulting
in a nonlinear system of equations,

− (uq,∇v)Ω +
(
ûq · n, v

)
∂Ω

= (f 2, v)Ω + (u∇q, v)Ω (9)

− (u,∇τ)Ω + (ûn, τ)∂Ω = (q, τ)Ω (10)
u = g on Γ (11)
q = fnΓ on Γ (12)

Unlike the Local and Compact Discontinuous-Galerkin schemes[23, 24], the operator for the
eikonal equation is quadratic, hence the equation for the gradient cannot be recombined back
into the original equation.

Eqns. 9-10 form a forced hyperbolic system with eigenvalues, λ·n =
(
qn ±

√
q2

n + 4u, 0, 0
)
,

where qn = q·n.* In the current Discontinuous-Galerkin framework, the numerical flux across
the element boundaries must be supplied. Here a Lax upwind flux is used, e.g.

(
ûq · n, v

)
∂Ω

=
(

{uq} · n − 1
2

|λ · n| JuK · n, v
)

∂Ω
(13)

where {ϕ} and JϕK are the average and jump operators respectively across the discontinuous
*The hyperbolic operator in isolation is singular, however the source terms add diagonal components to

the system residual.
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element boundary. Unfortunately, this straightforward implementation does not provide
sufficient dissipation to maintain stability. When u is small |λ · n| ≈ 2 |qn|, however when
the gradient is aligned with the element boundary this term is also small. This is especially
troublesome when computing the distance from the boundary as the dissipation is typically
most needed near the boundary where u ↓ 0. To account for this a modified Lax upwind
flux is employed, (

ûq · n, v
)

∂Ω
=

(
{uq} · n − 1

2
|f | JuK, v

)
∂Ω

(14)

where the absolute value on f is redundant.
Despite the numerical dissipation from the upwind flux, the discrete integration of

Eqns. 9-10 is not guaranteed to converge to the weak solution which satisfies the entropy
condition for the eikonal equation (cf. [25]). Dissipation is added by modifying the front-
propagation speed to depend upon the curvature,

∇u · ∇u = f 2 + ϵ∇ · ∇u (15)

where ϵ is a scalar, and f 2 + ϵ∇ · ∇u > 0. This is equivalent to modifying the front-
propagation speed directly in Eqn. 1 and dropping terms proportional ϵ2 after squaring the
system. In the limit as ϵ ↓ 0, the entropy-satisfying solution for the original speed f is
obtained.

Writing the weak formulation, and using integration by parts to transform the diffusion
term Eqns. 9-10 become,

− (uq,∇v)Ω +
(
ûq · n, v

)
∂Ω

+ (ϵ∇u,∇v)Ω −
(
ϵ∇̂u · n, v

)
∂Ω

= (f 2, v)Ω + (u∇q, v)Ω (16)

− (u,∇τ)Ω + (ûn, τ)∂Ω = (q, τ)Ω (17)
u = g on Γ (18)
q = fnΓ on Γ (19)

The diffusion in Eqn. 16 is applied directly using the gradient of the state rather than q

to better remove oscillations during transient start-ups. The numerical flux of Bassi and
Rebay[26] is used for the diffusion term across a discontinuous boundary.

The original eikonal equation has been transformed from a scalar hyperbolic equation to a
system of mixed hyperbolic elliptic equations. At first this does not seem to be progress, how-
ever the system Eqns. 16-17 is easily implemented within the parallel Discontinuous-Galerkin
spectral-element infrastructure described previously. The same matrix-free, tensor-product
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sum-factorization approach is used, along with optimized kernels using SIMD vectorization.
Further, it is straightforward to extend the tensor-product Alternating Direction Implicit
(ADI) preconditioner described in [19] to the current system using the spectral decomposi-
tion of the hyperbolic operators.

3 Numerical Experiments
The system for the stationary eikonal equation, Eqns. 16-17, is computed on an unstruc-

tured mesh with hexahedral elements. The numerical examples here use planar geometry
as an initial proof-of-concept, though the implementation and computed solution are three-
dimensional. The finite-element mesh is generated using an iso-parametric mapping of ratio-
nal interpolants which enables us to evaluate the geometry information at spectral accuracy.
The geometry of the mesh is represented using the same polynomial order as the computed
solution. All of the examples compute the distance function from the boundary Γ, i.e. f = 1
and g = 0. The outer boundaries of the computational domain use a Neumann boundary
condition ∇u · n = 0.

The system rapidly converges when the initial guess is “close” to the final solution,
however with general initial conditions the system becomes difficult to converge as isolated
non-physical pockets (u < 0) develop and persist. To alleviate this problem, the solution is
initially computed with a relatively large value of the diffusion coefficient ϵ ∼ O(1), essen-
tially rendering Eqn. 16 Poisson’s equation. This initializes the field with a smooth distance
function based on the prescribed boundary conditions. As the elliptic system satisfies the
maximum principle, the distance everywhere is guaranteed to be positive. From this the
diffusion coefficient is reduced, and the convergence is well behaved. It is not claimed this
ad-hoc procedure is optimal, or even desirable, however it is effective is demonstrating the
performance of the approach. The solution at higher orders is initialized by projecting the
converged solution from lower order in a spectral continuation manner, without manipulating
the diffusion.

The formal accuracy of the scheme is verified by computing the distance from a circular
cylinder, for which the exact solution is readily available. The convergence of the residual
is presented in Fig. 1a. As described above, the dissipation is incrementally reduced to zero
using the N = 2 polynomial basis, where N is the solution order. This eventually converges
to roughly machine epsilon. The progressively higher-order solutions are initialized and
rapidly converge again to roughly machine epsilon. The computed error with progressively
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Figure 1: Solution of the distance function about a circular cylinder.

finer resolution is presented in Fig. 1b. All schemes demonstrate formal accuracy in the
asymptotic limit. The error in the solution at N = 16 on the coarsest resolution available is
already machine epsilon. Figure 1b highlights the benefits of higher-order for this application,
as the same error level is achieved using orders of magnitude fewer degrees of freedom with
the higher-order polynomial basis.

The utility of the scheme is tested for two airfoil configurations: the NACA 0012 which
contains a sharp trailing edge, and the T106 configuration which combines regions of both
convex and concave curvature. Unlike the circular cylinder configuration, here the residual
does not converge to near machine epsilon. These cases converge several orders of magnitude
before stalling. Similarly, it is not possible to reduce the auxiliary dissipation coefficient, ϵ,
to zero and still generate physically-consistent results.

The solution of Eqns. 16-17 on the NACA 0012 for 2nd-, 4th-, and 8th-order accuracy is
presented in Fig. 2. In these tests the resolution itself is increasing, i.e. the number of degrees
of freedom is not held fixed. The contours show the distance field u ∈ [0, 2c]. As expected,
with the non-zero dissipation in regions of strong concave curvature near the leading and
trailing edges the marching of the distance field is strongly retarded. As the solution order
increases the resolution of the curvature increases outside the region of influence of the
dissipation, however near the body ϵ ∼ u, and the dissipation term still dominates.

Similar solutions at 2nd-, 4th-, and 8th-order accuracy for the T106 airfoil are presented
in Fig. 3. Again, as expected, near the leading and trailing edges the marching of the dis-
tance field is strongly retarded, while the opposite occurs in the region of convex curvature.
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(a) N = 2 (b) N = 4

(c) N = 8

Figure 2: Solution of the distance function about a NACA 0012 airfoil. u ∈ [0, 2c].

This prevents the lines of constant distance crossing, i.e. generates a weak solution consis-
tent with entropy condition. In this configuration it is noticed that the region outside the
strong influence of the auxiliary dissipation, i.e. when u > ϵ, the solution starts to develop
oscillations as the order increases. This is evidence that the auxiliary dissipation is not
simply directing the solution to satisfy the entropy condition, but is also an ad-hoc method
of stabilization. If the level sets are not constant curvature when the effective dissipation is
removed, as is the case here in the T106 airfoil configuration, oscillations appear.

4 Summary
A novel spectral-element approach for the eikonal equation is presented. This approach is

readily implemented in standard flow solvers developed for the Navier-Stokes equations. Ver-
ification results on a circular cylinder demonstrate that the approach is capable of essentially
arbitrary order of accuracy, however there are several issues still outstanding. Currently the
convergence is limited on practical problems. This is due in part to not including the source
terms in the ADI preconditioner. This is a topic which will be visited in future work. Sim-
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(a) N = 2 (b) N = 4

(c) N = 8

Figure 3: Solution of the distance function about a T106 airfoil. u ∈ [0, c].

ilarly, the globalization procedure currently being used (cf. [27]) is incompatible with the
eikonal system, hence a robust solution of the nonlinear system is not possible. This topic
will also be investigated going forward. It is important to understand that solving these
issues improves the robustness of the method for other systems of equations, such as when
using Reynolds-averaged Navier-Stokes (RANS) turbulence models, which also have general
source terms. This is part of the motivation to re-use the same infrastructure as the original
CFD solver when solving the eikonal system.

Specific to the eikonal equation, the numerical scheme does not inherently reproduce the
physical entropy solution to the original system. This necessitates the addition of ad-hoc
dissipation in order to produce a consistent solution. While this is representative of the
current state-of-the-art for solving the stationary eikonal system, it is still unpleasant. Fur-
ther analysis is required in order to understand and robustly produce a physically-consistent
solution without requiring ad-hoc procedues.
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